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Beamlets from stochastic acceleration
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We investigate the dynamics of a realization of the stochastic Fermi acceleration mechanism. The model
consists of test particles moving between two oscillating magnetic clouds and differs from the usual Fermi-
Ulam model in two ways. (i) Particles can penetrate inside clouds before being reflected. (ii) Particles can
radiate a fraction of their energy during the process. Since the Fermi mechanism is at work, particles are
stochastically accelerated, even in the presence of the radiated energy. Furthermore, due to a kind of resonance
between particles and oscillating clouds, the probability density function of particles is strongly modified, thus
generating beams of accelerated particles rather than a translation of the whole distribution function to higher
energy. This simple mechanism could account for the presence of beamlets in some space plasma physics

situations.
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I. INTRODUCTION

More than half a century ago Fermi [1], in the context of
cosmic rays acceleration, proposed a simple model which
describes how relativistic charged particles can be acceler-
ated through stochastic encounters with magnetized clouds
(see Ref. [2] for a review). The model became rapidly popu-
lar and is referred to as a paradigm for further studies in a
wide range of different physical systems [3-9]. For example,
within a dynamical systems framework, the so-called Fermi-
Ulam model (FUM) [10-15] describes the bouncing of a ball
between a sinusoidally oscillating wall and a fixed one. This
system can generally be written as a two-dimensional map,
whose coordinates are the velocity of the ball after a collision
with the wall and the phase of the moving wall [16]. A sim-
plified version of the FUM has been proposed in order to
reduce computational time [11,17]. In this system the dis-
placement of the wall is ignored and only the momentum
exchanged between the ball and the wall is retained. How-
ever, this model underestimates the acceleration and further
modifications have been done by taking into account the ef-
fect of the wall displacement [14]. When both the original
and modified FUMs have been run for an ensemble of par-
ticles with a well defined distribution function, energization
of the whole distribution function has been observed. This
means that distribution functions of particles collected at dif-
ferent times can be properly rescaled to the initial one. The
energization of the bulk of particles can also be observed in
numerical simulations of particles in turbulent [18] and
stochastic fields [19].

In variance to stochastic acceleration that apparently gives
rise to energization of the bulk, collimated beams of accel-
erated particles are observed in space plasmas. For example,
solar flares are even characterized by the presence of particle
beams [20,21] that look to be a different population with
respect to the core. Electromagnetic emission in space is gen-
erally attributed to beams of accelerated particles [22,23].
Recently, using different satellite crossings, magnetic field-
aligned ion beams (called “beamlets”) have been detected in
the Earth’s magnetotail [24-26]. Even if beams of acceler-
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ated particles have never been observed within stochastic
acceleration mechanisms, it has been conjectured [25,26]
that the acceleration mechanisms of beamlets could be due to
the interaction between particles and moving magnetic struc-
tures, with the aid of some underlying selection mechanism.
In the present paper we show that beamlets could also be
produced within a Fermi-like mechanism. This is due to the
fact that when a particle penetrates inside a cloud before
being reflected, after a certain time it becomes resonant with
the cloud. The particle can then be captured within the
clouds and this mechanism is able to avoid the complete loss
of the energy acquired by the particle. In Sec. II we present
the model and in Sec. Il we show numerical results. Finally
in Sec. IV we briefly outline how a specific model for beam-
lets in space can eventually be built up from our results.

II. A SIMPLE MODEL FOR STOCHASTIC
ACCELERATION

Let us consider a version of the FUM [10] where nonrel-
ativistic charged particles of mass m move between magnetic
clouds of mass M >m, along the x direction. The boundaries
of magnetic clouds that correspond to the moving wall in the
FUM, are initially placed at positions s,X,. The index k
stands for left (L) and right (R), respectively, and s,= * 1
according to the fact that the boundary of the L cloud is
placed initially at position —X,, while the boundary of R
cloud is placed at X,. The regions of space x<-X, and x
=X, correspond, respectively, to the L and R cloud. Each
boundary moves independently following a given oscillating
functional shape described by

Xk(t) = SkXO +Ak Sin(a)kt + lek) (1)

around the positions X,,. Here wy, represents the frequency of
the oscillating motion, A; the amplitude of the motion, and
«a;, the random phase chosen in the range [0,27]. The dis-
tance [(r) between the clouds is assumed to be greater than
zero for all times ¢. A particle between the clouds moves and
collides following the Newtonian laws of motion for a point
body. If V=dX/dt and u represent, respectively, the veloci-
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FIG. 1. The space-time behavior of two different test particles
moving between the walls (full lines) is showed for two values of
b, namely, by=2 X 1073 (left panel) and by=2 X 1077 (right panel).
The time behavior of the oscillating clouds, being the amplitudes of
the motion very low compared to the distance between them, is
viewed in this plot as a couple of vertical dotted lines at positions
x=*1, their oscillating behavior cannot be appreciated. The ran-
dom penetration inside the clouds is well visible in the left panel,
corresponding to the higher value of b,.

ties of a cloud and of the charge before a collision, after that
the particle velocity becomes —u+2V. Then the difference of
energy before and after a collision AE=2m(V?~a|u||V]) de-
pends on the relative (random) sign o=uV/|u||V| between
the speed of the charge and that of the cloud during the
collision. Head-on collisions (o=—1) increase the energy of
the particle by a factor AE, while tail-on collisions (o=1)
lead to a decreasing in energy.
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FIG. 2. Velocity square gained by a test particle as a function of
time, for a system with Q=1. From top to bottom by=2Xx 1077,
by=2X1075, and by=2 X 1073, The value of u is set to u=0.
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FIG. 3. We show the phase space (u2, ¢,) of a test particle for
the system with (=0, say one fixed and an oscillating cloud. Panels
refer to three different values of by, namely, by=2X 1077 (upper
panel), by=2 X 1076 (middle panel), and by=2 X 10~> (lower panel).
The value of u is set to u=0.

According to the original idea by Fermi [1], clouds are
viewed as regions of space where the magnetic field is con-
centrated and particle can also penetrate [19]. Instead of de-
scribing the dynamics of the model as a nonlinear map [12],
we integrate the Newton equation of motion with a variable
time step. However, since the dynamics depends on encoun-
ters between particles and clouds, we introduce a discrete
variable n which counts successive collisions, a collision be-
ing defined through the time 7, at which [X(z,)—x,(z,)| <e,
where x, is the particle position and e<1. Our choice of
integrating Newton laws of motion comes from the fact that,
as said before, here we consider a peculiar feature with re-
spect to the classical FUM. Since clouds represent regions of
space where the magnetic field is concentrated, a particle
does not actually collide with a rigid wall, but when it arrives
at the cloud position at time ¢, it can penetrate the cloud
before being reflected by the action of the Lorenz force. We
assume that the particle can penetrate a distance r,=B,u,_i,
where B, is a random parameter which depends on the mag-
netic field intensity within each cloud and u,,_, is the velocity
of particle when it encounters the cloud (see Fig. 1). Inside
the cloud particle can radiate energy at the Larmor rate pro-
portional to its squared acceleration [7]

dQ * )

Pt Hu, —u,_1)", (2)
where uj:—un_ 1+2V, is the velocity of the particle after the
collision, without considering the energy losses via radiation
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FIG. 4. The same of Fig. 3 for two oscillating clouds with
Q=1.

emission. Finally, taking into account the radiation energy,
the particle velocity after the nth collision is given by [7]

1. 3)

where w is a dimensionless free parameter that depends on
the amplitude of the radiation loss.

u,= Sgn{u:}[|u:| - M( 7)|M: — Uy

III. NUMERICAL RESULTS

In order to have dimensionless quantities, lengths were
normalized to X, and times to 1/w;. This leads to rewrite the
equations of motion of the two clouds as

XL(t) =-1 +AL Sin(t'f' aL),

XR(t) =1 +AR Sln(Qt+ CYR),

where ()=wg/w;. Particle velocities are normalized to the
thermal speed uy, so that w=[27y/(mwg)]Q) and b,
=[B,uy/ (Xywg) Q2. We conjecture that the magnetic field in-
side clouds is random, so that b,, which is proportional to the
inverse of the magnetic strength, is taken as a random num-
ber uniformly distributed in the range b, € [0,b,). We keep
the amplitudes of oscillations A;=AR=0.01 fixed and we
present results as (), b,, and u are varied.

First of all let us consider the dynamics of a single test
particle, their initial speed is randomly chosen in the interval
[-1,1] and it is injected at a random position between the
two clouds. In Fig. 1 we show the trajectory of a test particle
between the clouds for two values of the parameter b,
namely, bo=2X 1077 and hy=2 X 107>, which shows the dif-

PHYSICAL REVIEW E 78, 036201 (2008)

3.0F E
— 2B 0 =
5 E 123 = =
> z0F -
2 E E
15 E
2 F E
= 10 =
a ot 3
= osf -
0.0k R =

0.0 0.5 1.0 1.5 2.0 2.5 3.0

[u—(u)l /o

200 ]

Q 15i pw=2x10" 3
> e ]
T or ]
I 1.0~ -]
2k ]
E ]
£ 051 E
0.0 o ]

0 0.5 1.0 1.5 2.0 2.5 3.0

[u—(u)| /o

145 =
5 w=2x107" E
= 1.0 =
= E =
T 08E =
2 osf 3
2 04f -
) E E
0.2 E
0.0 3

3.

0.0 0.5 1.0 2.0 2.5

o

15
[u—(u)l /o

FIG. 5. Probability density functions of the absolute value of
standardized velocity fluctuations of an ensemble of 10° particles
for =0 (upper panel), u=2X10"° (middle panel), and w=2
X 1077 (lower panel). Dotted line refers to the initial Maxwellian
distribution, solid line corresponds to the distribution of particles at
time f,,,,=5 X 10°. The oscillation frequencies ratio is set to Q=1.

ferent penetrations inside the clouds. In this case =0, that
is, the particle does not radiate energy. In order to investigate
how the value of the penetration inside a cloud influences the
particle dynamics, the temporal variation of the kinetic en-
ergy ui has been studied by varying the parameter b,. In Fig.
2 the time evolution of u? for three different values of by, is
displayed. In the upper panel we show the case when b is
low enough. We see that the particle acquires energy in the
form of bursts at some fixed times. This means that the par-
ticle loses all energy acquired. However, we can clearly ob-
serve that, for some period of time, the energy acquired by
the particle does not decay to zero. In this period the energy
seems to be confined, that is, the dynamics is able to avoid
the complete loss of energy. This situation is unstable and,
after a certain time, the dynamics goes back and the particle
will lose energy. However, what is interesting is that by in-
creasing the value of b, a different behavior occurs. The
cooperative effect of the two oscillating clouds can confine
the energy of the particle thus breaking the usual Fermi
mechanism. As expected from Fermi acceleration the energy
is acquired by the system, but after an initial transient, it
remains almost constant with random oscillations around an
average value. Energy is never completely lost in successive
encounters with clouds and, for relatively higher values of
by, the energy is confined for all times and the above situa-
tion persists forever.

The above difference can be also highlighted by looking
at the phase space (12, ,), where ¢,=wit,mod (27 is the
phase of the oscillation of the kth cloud at the collision time,
each point representing a single collision. In Fig. 3 the phase
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FIG. 6. The same as Fig. 5 for Q)= \5

space of the system with just one oscillating cloud is
displayed, as b, is varied. For lower values of b, the phase
space is characterized by the presence of Kolmogorov-
Arnold-Moser (KAM) islands as in the case of the classical
FUM. These curves are destroyed when b increases, owing
to the stochasticity of the system. When both clouds oscillate
(see Fig. 4), the particle is “captured” by the clouds through
a kind of resonance effect. When the parameter b, is nearly
zero, the resonance effect is spread over a wide region in the
phase space (see the top panel of Fig. 4). When the value of
by is higher, the particle continues to oscillate between
clouds but the Fermi mechanism is, in some sense, broken:
energy is neither gained nor lost anymore, both tail-on and
head-on collisions work in a cooperative way. The confine-
ment of energy of a test particle also depends on the value of
M, that is, on the fact that it can lose energy not only through
tail-on collisions but also through radiative emission. The
lower the value of u the more test particles are captured
through the resonance effect.

Looking at the dynamics of a single test particle, it can be
easily conjectured what happens when an ensemble of test
particles is put into the system of oscillating clouds: the en-
ergy confinement on each particle breaks the usual random
acceleration mechanism leading to the formation of beam-
lets. We investigate the dynamics of the system by consider-
ing the motion of an ensemble of 10° particles for a given
time 7,,,,=5X 10°, after which we assume that the whole
ensemble of particles leaves the region between the clouds.
Particles are injected at random positions within the clouds
separation, and initial velocities are extracted from a one—
dimensional Maxwellian distribution normalized to the uni-
tary thermal velocity
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FIG. 7. Probability density functions of the absolute value of
standardized velocity fluctuations of an ensemble of 10° particles
for u=0 and Q=1. Dotted line represents the initial Maxwellian
distribution, solid lines correspond to the distributions of particles at
time f,,,,=5X 10°. Three different values of b, has been used,
namely, by=2X 107> (upper panel), by=2X 107 (middle panel),
and by=2x 1077 (lower panel).

1
P(u) = —= exp[- u*/2]. (4)
\1'277

In particular, we look for possible modifications of the prob-
ability distribution function (PDF) of particle velocities at
time 7,,,, With respect to the initial distribution. In Fig. 5
PDFs of the absolute value of the standardized velocity fluc-
tuations (u—(u))/ o, collected at time t,,,,, compared to the
initial one, for three values of the parameter u and for ()
=1 are shown. As conjectured previously, the main feature of
PDFs is the clear formation of a beamlet, say rather than a
Maxwellian distribution; after a time 7,,,, all particles gain
more or less the same energy thus generating a quasi-mono-
energetic beam. This is more visible for lower values of u,
namely, when u increases the beam broadens and the en-
semble of particles tends to become Maxwellian.

The generation of beamlets is a robust mechanism with
respect to variation of parameters. A beamlet is indeed
clearly formed even in the case of non rational ratio between
oscillation frequencies, as shown in Fig. 6, where =12. In
this last case, at variance with the case =1, beamlets
clearly survive even for larger values of u (compare lower
panels of Figs. 5 and 6). The generation of beamlets of en-
ergetic particles observed in Figs. 5 and 6 is also clearly
recognized as the parameter b is varied, as results from Fig.
7, where PDFs of the standardized velocity fluctuations at
tmax> Tor u=0, are displayed for three different values of by,
The formation of one or more beamlets is clearly visible in
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all cases, especially when particles can penetrate a longer
distance inside the clouds, that is, when b, is large enough.

IV. CONCLUSIONS

In the present paper, we investigated the dynamics of a
model for stochastic acceleration in which nonrelativistic
particles interact with two oscillating clouds with similar
characteristics. Particles are also allowed to penetrate inside
the clouds, the penetration depth depending on both the ve-
locity of each particle and the magnetic field inside the
cloud. The particle can also radiate energy during these pe-
riods of time. We found that, with a value of the penetration
inside a cloud small enough, the system behaves similar to a
standard FUM, while, increasing the penetration depth, a
strong stochasticity occurs which destroys the invariant span-
ning curves in the phase space. In addition, when the energy
radiated by a particle is either neglected or very small, well-
defined high-energy beamlets are generated. Beamlets tend
to be destroyed only when the radiation energy rate is high
enough. This is perhaps the most interesting point of our
paper, namely, the fact that an increasing stochasticity within
the system, by destroying the KAM torus, pushes the particle
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to become “resonant” with the cloud. In this way energy is
confined and beamlets can be generated.

Even though building up a specific model for the genera-
tion of beamlets in space plasmas is out of the scope of this
paper, we can note that oscillations of accelerating magnetic
structures in space plasmas can be easily driven by typical
instability mechanisms [27] similar to, for example, the ther-
mal instability [28] or the tearing instability [29-31]. More-
over, it is worthwhile to remark that ion beamlets inside the
Earth’s magnetotail can be detected at velocities of about
600-2000 km/s which are about 3-10 times the thermal
speed of the ambient particles, which is typically of the order
of uy, =200 km/s [24-26]. Our results show that, depending
on the parameter of our toy model and without the aid of an
externally imposed electric field, the stochastic acceleration
should be a good physical mechanism to increase the veloc-
ity of one or more beams of particles to about 3—50 times
their initial thermal speed.
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